That's a good question and I don't think the research on the subject provides a conclusive answer for trained athletes. For untrained individuals there's quite a bit of research indicating the benefits of WBV. Here's two somewhat contradictory studies:
Delecluse C, Roelants M, Diels R, Koninckx E, Verschueren S. (2005). Effects of whole body vibration training on muscle strength and sprint performance in sprint-trained athletes.Int J Sports Med, 26(8): 662-668.
Despite the expanding use of Whole Body Vibration training among athletes, it is not known whether adding Whole Body Vibration training to the conventional training of sprint-trained athletes will improve speed-strength performance. Twenty experienced sprint-trained athletes (13 male symbol, 7 female symbol, 17-30 years old) were randomly assigned to a Whole Body Vibration group (n=10: 6 male symbol and 4 female symbol) or a Control group (n=10: 7 male symbol, 3 female symbol). During a 5-week experimental period all subjects continued their conventional training program, but the subjects of the Whole Body Vibration group additionally performed three times weekly a Whole Body Vibration training prior to their conventional training program. The Whole Body Vibration program consisted of unloaded static and dynamic leg exercises on a vibration platform (35-40 Hz, 1.7-2.5 mm, Power Plate). Pre and post isometric and dynamic (100 degrees/s) knee-extensor and -flexor strength and knee-extension velocity at fixed resistances were measured by means of a motor-driven dynamometer (Rev 9000, Technogym). Vertical jump performance was measured by means of a contact mat. Force-time characteristics of the start action were assessed using a load cell mounted on each starting block. Sprint running velocity was recorded by means of a laser system. Isometric and dynamic knee-extensor and knee-flexor strength were unaffected (p>0.05) in the Whole Body Vibration group and the Control group. As well, knee-extension velocity remained unchanged (p>0.05). The duration of the start action, the resulting start velocity, start acceleration, and sprint running velocity did not change (>0.05) in either group. In conclusion, this specific Whole Body Vibration protocol of 5 weeks had no surplus value upon the conventional training program to improve speed-strength performance in sprint-trained athletes.
Fagnani F, Giombini A, Di Cesare A, Pigozzi F, Di Salvo V. (2006). The effects of a whole-body vibration program on muscle performance and flexibility in female athletes. Am J Phys Med Rehabil;85(12):956-962
OBJECTIVE: This randomized controlled study was designed to investigate the short-term effects of an 8-wk whole-body vibration protocol on muscle performance and flexibility in female competitive athletes. DESIGN: Twenty-six young volunteer female athletes (ages 21-27 yrs) were randomized to either the vibration group or control group. The vibration intervention consisted of an 8-wk whole-body vibration 3 times a week employed by standing on a vertical vibration platform. As outcome measures, three performance tests (counter-movement jump, extension strength of lower extremities with an isokinetic horizontal leg press, and a sit-and-reach test for flexibility) were performed initially and after 8 wks. RESULTS: A total of 24 athletes completed the study properly. In the vibration group (n = 13) whole-body vibration induced significant improvement of bilateral knee extensor strength (P < 0.001), counter-movements jump (P < 0.001), and flexibility (P < 0.001) after 8 wks of training. No significant changes were found for all the outcome measures for the control group (n = 11). CONCLUSIONS: Whole-body vibration is a suitable training method to improve knee extension maximal strength, counter-movement jump, and flexibility in a young female athlete if it is properly designed. Not only do the optimal frequency, amplitude, and g-forces need to be identified but also the level of muscle activation that would benefit more from vibration stimulation. The improvement of flexibility is important not only for performance but also for the prevention of muscle-tendon injury.